fractions --- 分数¶
源代码 Lib/fractions.py
fractions 模块支持分数运算。
分数实例可以由一对整数,一个分数,或者一个字符串构建而成。
-
class
fractions.Fraction(numerator=0, denominator=1)¶ -
class
fractions.Fraction(other_fraction) -
class
fractions.Fraction(float) -
class
fractions.Fraction(decimal) -
class
fractions.Fraction(string) The first version requires that numerator and denominator are instances of
numbers.Rationaland returns a newFractioninstance with valuenumerator/denominator. If denominator is0, it raises aZeroDivisionError. The second version requires that other_fraction is an instance ofnumbers.Rationaland returns aFractioninstance with the same value. The next two versions accept either afloator adecimal.Decimalinstance, and return aFractioninstance with exactly the same value. Note that due to the usual issues with binary floating-point (see 浮点算术:争议和限制), the argument toFraction(1.1)is not exactly equal to 11/10, and soFraction(1.1)does not returnFraction(11, 10)as one might expect. (But see the documentation for thelimit_denominator()method below.) The last version of the constructor expects a string or unicode instance. The usual form for this instance is:[sign] numerator ['/' denominator]
where the optional
signmay be either '+' or '-' andnumeratoranddenominator(if present) are strings of decimal digits. In addition, any string that represents a finite value and is accepted by thefloatconstructor is also accepted by theFractionconstructor. In either form the input string may also have leading and/or trailing whitespace. Here are some examples:>>> from fractions import Fraction >>> Fraction(16, -10) Fraction(-8, 5) >>> Fraction(123) Fraction(123, 1) >>> Fraction() Fraction(0, 1) >>> Fraction('3/7') Fraction(3, 7) >>> Fraction(' -3/7 ') Fraction(-3, 7) >>> Fraction('1.414213 \t\n') Fraction(1414213, 1000000) >>> Fraction('-.125') Fraction(-1, 8) >>> Fraction('7e-6') Fraction(7, 1000000) >>> Fraction(2.25) Fraction(9, 4) >>> Fraction(1.1) Fraction(2476979795053773, 2251799813685248) >>> from decimal import Decimal >>> Fraction(Decimal('1.1')) Fraction(11, 10)
The
Fractionclass inherits from the abstract base classnumbers.Rational, and implements all of the methods and operations from that class.Fractioninstances are hashable, and should be treated as immutable. In addition,Fractionhas the following properties and methods:在 3.2 版更改: The
Fractionconstructor now acceptsfloatanddecimal.Decimalinstances.-
numerator¶ 最简分数形式的分子。
-
denominator¶ 最简分数形式的分母。
-
from_float(flt)¶ This class method constructs a
Fractionrepresenting the exact value of flt, which must be afloat. Beware thatFraction.from_float(0.3)is not the same value asFraction(3, 10).
-
from_decimal(dec)¶ This class method constructs a
Fractionrepresenting the exact value of dec, which must be adecimal.Decimalinstance.注解
From Python 3.2 onwards, you can also construct a
Fractioninstance directly from adecimal.Decimalinstance.
-
limit_denominator(max_denominator=1000000)¶ Finds and returns the closest
Fractiontoselfthat has denominator at most max_denominator. This method is useful for finding rational approximations to a given floating-point number:>>> from fractions import Fraction >>> Fraction('3.1415926535897932').limit_denominator(1000) Fraction(355, 113)
or for recovering a rational number that's represented as a float:
>>> from math import pi, cos >>> Fraction(cos(pi/3)) Fraction(4503599627370497, 9007199254740992) >>> Fraction(cos(pi/3)).limit_denominator() Fraction(1, 2) >>> Fraction(1.1).limit_denominator() Fraction(11, 10)
-
__floor__()¶ Returns the greatest
int<= self. This method can also be accessed through themath.floor()function:>>> from math import floor >>> floor(Fraction(355, 113)) 3
-
__ceil__()¶ Returns the least
int>= self. This method can also be accessed through themath.ceil()function.
-
__round__()¶ -
__round__(ndigits) The first version returns the nearest
inttoself, rounding half to even. The second version roundsselfto the nearest multiple ofFraction(1, 10**ndigits)(logically, ifndigitsis negative), again rounding half toward even. This method can also be accessed through theround()function.
-
-
fractions.gcd(a, b)¶ 返回整数 a 和 b 的最大公约数。如果 a 或 b 之一非零,则
gcd(a, b)的绝对值是能同时整除 a 和 b 的最大整数。若 b 非零,则gcd(a,b)与 b 同号;否则返回值与 a 同号。gcd(0, 0)返回0。3.5 版后已移除: 由
math.gcd()取代.
参见
numbers模块The abstract base classes making up the numeric tower.
