ast --- 抽象语法树¶
源代码: Lib/ast.py
ast 模块帮助 Python 程序处理 Python 语法的抽象语法树。抽象语法或许会随着 Python 的更新发布而改变;该模块能够帮助理解当前语法在编程层面的样貌。
抽象语法树可通过将 ast.PyCF_ONLY_AST 作为旗标传递给 compile() 内置函数来生成,或是使用此模块中提供的 parse() 辅助函数。返回结果将是一个对象树,,其中的类都继承自 ast.AST。抽象语法树可被内置的 compile() 函数编译为一个 Python 代码对象。
抽象文法¶
抽象文法目前定义如下
-- ASDL's 4 builtin types are:
-- identifier, int, string, constant
module Python
{
mod = Module(stmt* body, type_ignore* type_ignores)
| Interactive(stmt* body)
| Expression(expr body)
| FunctionType(expr* argtypes, expr returns)
stmt = FunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list, expr? returns,
string? type_comment)
| AsyncFunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list, expr? returns,
string? type_comment)
| ClassDef(identifier name,
expr* bases,
keyword* keywords,
stmt* body,
expr* decorator_list)
| Return(expr? value)
| Delete(expr* targets)
| Assign(expr* targets, expr value, string? type_comment)
| AugAssign(expr target, operator op, expr value)
-- 'simple' indicates that we annotate simple name without parens
| AnnAssign(expr target, expr annotation, expr? value, int simple)
-- use 'orelse' because else is a keyword in target languages
| For(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment)
| AsyncFor(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment)
| While(expr test, stmt* body, stmt* orelse)
| If(expr test, stmt* body, stmt* orelse)
| With(withitem* items, stmt* body, string? type_comment)
| AsyncWith(withitem* items, stmt* body, string? type_comment)
| Match(expr subject, match_case* cases)
| Raise(expr? exc, expr? cause)
| Try(stmt* body, excepthandler* handlers, stmt* orelse, stmt* finalbody)
| Assert(expr test, expr? msg)
| Import(alias* names)
| ImportFrom(identifier? module, alias* names, int? level)
| Global(identifier* names)
| Nonlocal(identifier* names)
| Expr(expr value)
| Pass | Break | Continue
-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- BoolOp() can use left & right?
expr = BoolOp(boolop op, expr* values)
| NamedExpr(expr target, expr value)
| BinOp(expr left, operator op, expr right)
| UnaryOp(unaryop op, expr operand)
| Lambda(arguments args, expr body)
| IfExp(expr test, expr body, expr orelse)
| Dict(expr* keys, expr* values)
| Set(expr* elts)
| ListComp(expr elt, comprehension* generators)
| SetComp(expr elt, comprehension* generators)
| DictComp(expr key, expr value, comprehension* generators)
| GeneratorExp(expr elt, comprehension* generators)
-- the grammar constrains where yield expressions can occur
| Await(expr value)
| Yield(expr? value)
| YieldFrom(expr value)
-- need sequences for compare to distinguish between
-- x < 4 < 3 and (x < 4) < 3
| Compare(expr left, cmpop* ops, expr* comparators)
| Call(expr func, expr* args, keyword* keywords)
| FormattedValue(expr value, int conversion, expr? format_spec)
| JoinedStr(expr* values)
| Constant(constant value, string? kind)
-- the following expression can appear in assignment context
| Attribute(expr value, identifier attr, expr_context ctx)
| Subscript(expr value, expr slice, expr_context ctx)
| Starred(expr value, expr_context ctx)
| Name(identifier id, expr_context ctx)
| List(expr* elts, expr_context ctx)
| Tuple(expr* elts, expr_context ctx)
-- can appear only in Subscript
| Slice(expr? lower, expr? upper, expr? step)
-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
expr_context = Load | Store | Del
boolop = And | Or
operator = Add | Sub | Mult | MatMult | Div | Mod | Pow | LShift
| RShift | BitOr | BitXor | BitAnd | FloorDiv
unaryop = Invert | Not | UAdd | USub
cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn
comprehension = (expr target, expr iter, expr* ifs, int is_async)
excepthandler = ExceptHandler(expr? type, identifier? name, stmt* body)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
arguments = (arg* posonlyargs, arg* args, arg? vararg, arg* kwonlyargs,
expr* kw_defaults, arg? kwarg, expr* defaults)
arg = (identifier arg, expr? annotation, string? type_comment)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- keyword arguments supplied to call (NULL identifier for **kwargs)
keyword = (identifier? arg, expr value)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- import name with optional 'as' alias.
alias = (identifier name, identifier? asname)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
withitem = (expr context_expr, expr? optional_vars)
match_case = (pattern pattern, expr? guard, stmt* body)
pattern = MatchValue(expr value)
| MatchSingleton(constant value)
| MatchSequence(pattern* patterns)
| MatchMapping(expr* keys, pattern* patterns, identifier? rest)
| MatchClass(expr cls, pattern* patterns, identifier* kwd_attrs, pattern* kwd_patterns)
| MatchStar(identifier? name)
-- The optional "rest" MatchMapping parameter handles capturing extra mapping keys
| MatchAs(pattern? pattern, identifier? name)
| MatchOr(pattern* patterns)
attributes (int lineno, int col_offset, int end_lineno, int end_col_offset)
type_ignore = TypeIgnore(int lineno, string tag)
}
节点类¶
-
class
ast.AST¶ This is the base of all AST node classes. The actual node classes are derived from the
Parser/Python.asdlfile, which is reproduced above. They are defined in the_astC module and re-exported inast.抽象语法定义的每个左侧符号(比方说,
ast.stmt或者ast.expr)定义了一个类。另外,在抽象语法定义的右侧,对每一个构造器也定义了一个类;这些类继承自树左侧的类。比如,ast.BinOp继承自ast.expr。对于多分支产生式(也就是"和规则"),树右侧的类是抽象的;只有特定构造器结点的实例能被构造。-
_fields¶ 每个具体类都有个属性
_fields, 用来给出所有子节点的名字。每个具体类的实例对它每个子节点都有一个属性,对应类型如文法中所定义。比如,
ast.BinOp的实例有个属性left,类型是ast.expr.如果这些属性在文法中标记为可选(使用问号),对应值可能会是
None。如果这些属性有零或多个(用星号标记),对应值会用Python的列表来表示。所有可能的属性必须在用compile()编译得到AST时给出,且是有效的值。
-
lineno¶ -
col_offset¶ -
end_lineno¶ -
end_col_offset¶ ast.expr和ast.stmt子类的实例有lineno、col_offset、end_lineno和end_lineno属性。lineno和end_lineno是源代码的第一行行数和最后一行行数(从1开始, 所以第一行行数是1),而col_offset和end_col_offset是该生成节点第一个和最后一个 token 的 UTF-8 字节偏移量。记录下 UTF-8 偏移量的原因是 parser 内部使用 UTF-8 。注意编译器不需要结束位置,所以结束位置是可选的。结束偏移在最后一个符号*之后*,例如你可以通过
source_line[node.col_offset : node.end_col_offset]获得一个单行表达式节点的源码片段。
一个类的构造器
ast.T像下面这样parse它的参数。如果有位置参数,它们必须和
T._fields中的元素一样多;他们会像这些名字的属性一样被赋值。如果有关键字参数,它们必须被设为和给定值同名的属性。
比方说,要创建和填充节点
ast.UnaryOp,你得用node = ast.UnaryOp() node.op = ast.USub() node.operand = ast.Constant() node.operand.value = 5 node.operand.lineno = 0 node.operand.col_offset = 0 node.lineno = 0 node.col_offset = 0
或者更紧凑点
node = ast.UnaryOp(ast.USub(), ast.Constant(5, lineno=0, col_offset=0), lineno=0, col_offset=0)
-
在 3.8 版更改: 类 ast.Constant 现在用于所有常量。
在 3.9 版更改: 简单索引由它们的值表示,扩展切片表示为元组。
3.8 版后已移除: 旧的类 ast.Num、ast.Str、 ast.Bytes、ast.NameConstant 和 ast.Ellipsis 仍然有效,但是它们会在未来的 Python 版本中被移除。同时,实例化它们会返回一个不同类的实例。
3.9 版后已移除: 旧的类 ast.Index 和 ast.ExtSlice 仍然有效,但是它们会在未来的 Python 版本中被移除。同时,实例化它们会返回一个不同类的实例。
注解
The descriptions of the specific node classes displayed here were initially adapted from the fantastic Green Tree Snakes project and all its contributors.
字面值¶
-
class
ast.Constant(value)¶ 一个常量。
Constant字面值的value属性即为其代表的 Python 对象。它可以代表简单的数字,字符串或者None对象,但是也可以代表所有元素都是常量的不可变容器(例如元组或冻结集合)。>>> print(ast.dump(ast.parse('123', mode='eval'), indent=4)) Expression( body=Constant(value=123))
-
class
ast.FormattedValue(value, conversion, format_spec)¶ Node representing a single formatting field in an f-string. If the string contains a single formatting field and nothing else the node can be isolated otherwise it appears in
JoinedStr.valueis any expression node (such as a literal, a variable, or a function call).conversionis an integer:-1: no formatting
115:
!sstring formatting114:
!rrepr formatting97:
!aascii formatting
format_specis aJoinedStrnode representing the formatting of the value, orNoneif no format was specified. Bothconversionandformat_speccan be set at the same time.
-
class
ast.JoinedStr(values)¶ An f-string, comprising a series of
FormattedValueandConstantnodes.>>> print(ast.dump(ast.parse('f"sin({a}) is {sin(a):.3}"', mode='eval'), indent=4)) Expression( body=JoinedStr( values=[ Constant(value='sin('), FormattedValue( value=Name(id='a', ctx=Load()), conversion=-1), Constant(value=') is '), FormattedValue( value=Call( func=Name(id='sin', ctx=Load()), args=[ Name(id='a', ctx=Load())], keywords=[]), conversion=-1, format_spec=JoinedStr( values=[ Constant(value='.3')]))]))
-
class
ast.List(elts, ctx)¶ -
class
ast.Tuple(elts, ctx)¶ A list or tuple.
eltsholds a list of nodes representing the elements.ctxisStoreif the container is an assignment target (i.e.(x,y)=something), andLoadotherwise.>>> print(ast.dump(ast.parse('[1, 2, 3]', mode='eval'), indent=4)) Expression( body=List( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)], ctx=Load())) >>> print(ast.dump(ast.parse('(1, 2, 3)', mode='eval'), indent=4)) Expression( body=Tuple( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)], ctx=Load()))
-
class
ast.Set(elts)¶ A set.
eltsholds a list of nodes representing the set's elements.>>> print(ast.dump(ast.parse('{1, 2, 3}', mode='eval'), indent=4)) Expression( body=Set( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)]))
-
class
ast.Dict(keys, values)¶ A dictionary.
keysandvalueshold lists of nodes representing the keys and the values respectively, in matching order (what would be returned when callingdictionary.keys()anddictionary.values()).When doing dictionary unpacking using dictionary literals the expression to be expanded goes in the
valueslist, with aNoneat the corresponding position inkeys.>>> print(ast.dump(ast.parse('{"a":1, **d}', mode='eval'), indent=4)) Expression( body=Dict( keys=[ Constant(value='a'), None], values=[ Constant(value=1), Name(id='d', ctx=Load())]))
Variables¶
-
class
ast.Name(id, ctx)¶ A variable name.
idholds the name as a string, andctxis one of the following types.
-
class
ast.Load¶ -
class
ast.Store¶ -
class
ast.Del¶ Variable references can be used to load the value of a variable, to assign a new value to it, or to delete it. Variable references are given a context to distinguish these cases.
>>> print(ast.dump(ast.parse('a'), indent=4)) Module( body=[ Expr( value=Name(id='a', ctx=Load()))], type_ignores=[]) >>> print(ast.dump(ast.parse('a = 1'), indent=4)) Module( body=[ Assign( targets=[ Name(id='a', ctx=Store())], value=Constant(value=1))], type_ignores=[]) >>> print(ast.dump(ast.parse('del a'), indent=4)) Module( body=[ Delete( targets=[ Name(id='a', ctx=Del())])], type_ignores=[])
-
class
ast.Starred(value, ctx)¶ A
*varvariable reference.valueholds the variable, typically aNamenode. This type must be used when building aCallnode with*args.>>> print(ast.dump(ast.parse('a, *b = it'), indent=4)) Module( body=[ Assign( targets=[ Tuple( elts=[ Name(id='a', ctx=Store()), Starred( value=Name(id='b', ctx=Store()), ctx=Store())], ctx=Store())], value=Name(id='it', ctx=Load()))], type_ignores=[])
表达式¶
-
class
ast.Expr(value)¶ When an expression, such as a function call, appears as a statement by itself with its return value not used or stored, it is wrapped in this container.
valueholds one of the other nodes in this section, aConstant, aName, aLambda, aYieldorYieldFromnode.>>> print(ast.dump(ast.parse('-a'), indent=4)) Module( body=[ Expr( value=UnaryOp( op=USub(), operand=Name(id='a', ctx=Load())))], type_ignores=[])
-
class
ast.UnaryOp(op, operand)¶ A unary operation.
opis the operator, andoperandany expression node.
-
class
ast.UAdd¶ -
class
ast.USub¶ -
class
ast.Not¶ -
class
ast.Invert¶ Unary operator tokens.
Notis thenotkeyword,Invertis the~operator.>>> print(ast.dump(ast.parse('not x', mode='eval'), indent=4)) Expression( body=UnaryOp( op=Not(), operand=Name(id='x', ctx=Load())))
-
class
ast.BinOp(left, op, right)¶ A binary operation (like addition or division).
opis the operator, andleftandrightare any expression nodes.>>> print(ast.dump(ast.parse('x + y', mode='eval'), indent=4)) Expression( body=BinOp( left=Name(id='x', ctx=Load()), op=Add(), right=Name(id='y', ctx=Load())))
-
class
ast.Add¶ -
class
ast.Sub¶ -
class
ast.Mult¶ -
class
ast.Div¶ -
class
ast.FloorDiv¶ -
class
ast.Mod¶ -
class
ast.Pow¶ -
class
ast.LShift¶ -
class
ast.RShift¶ -
class
ast.BitOr¶ -
class
ast.BitXor¶ -
class
ast.BitAnd¶ -
class
ast.MatMult¶ Binary operator tokens.
-
class
ast.BoolOp(op, values)¶ A boolean operation, 'or' or 'and'.
opisOrorAnd.valuesare the values involved. Consecutive operations with the same operator, such asa or b or c, are collapsed into one node with several values.This doesn't include
not, which is aUnaryOp.>>> print(ast.dump(ast.parse('x or y', mode='eval'), indent=4)) Expression( body=BoolOp( op=Or(), values=[ Name(id='x', ctx=Load()), Name(id='y', ctx=Load())]))
-
class
ast.Compare(left, ops, comparators)¶ A comparison of two or more values.
leftis the first value in the comparison,opsthe list of operators, andcomparatorsthe list of values after the first element in the comparison.>>> print(ast.dump(ast.parse('1 <= a < 10', mode='eval'), indent=4)) Expression( body=Compare( left=Constant(value=1), ops=[ LtE(), Lt()], comparators=[ Name(id='a', ctx=Load()), Constant(value=10)]))
-
class
ast.Eq¶ -
class
ast.NotEq¶ -
class
ast.Lt¶ -
class
ast.LtE¶ -
class
ast.Gt¶ -
class
ast.GtE¶ -
class
ast.Is¶ -
class
ast.IsNot¶ -
class
ast.In¶ -
class
ast.NotIn¶ Comparison operator tokens.
-
class
ast.Call(func, args, keywords, starargs, kwargs)¶ A function call.
funcis the function, which will often be aNameorAttributeobject. Of the arguments:argsholds a list of the arguments passed by position.keywordsholds a list ofkeywordobjects representing arguments passed by keyword.
When creating a
Callnode,argsandkeywordsare required, but they can be empty lists.starargsandkwargsare optional.>>> print(ast.dump(ast.parse('func(a, b=c, *d, **e)', mode='eval'), indent=4)) Expression( body=Call( func=Name(id='func', ctx=Load()), args=[ Name(id='a', ctx=Load()), Starred( value=Name(id='d', ctx=Load()), ctx=Load())], keywords=[ keyword( arg='b', value=Name(id='c', ctx=Load())), keyword( value=Name(id='e', ctx=Load()))]))
-
class
ast.keyword(arg, value)¶ A keyword argument to a function call or class definition.
argis a raw string of the parameter name,valueis a node to pass in.
-
class
ast.IfExp(test, body, orelse)¶ An expression such as
a if b else c. Each field holds a single node, so in the following example, all three areNamenodes.>>> print(ast.dump(ast.parse('a if b else c', mode='eval'), indent=4)) Expression( body=IfExp( test=Name(id='b', ctx=Load()), body=Name(id='a', ctx=Load()), orelse=Name(id='c', ctx=Load())))
-
class
ast.Attribute(value, attr, ctx)¶ Attribute access, e.g.
d.keys.valueis a node, typically aName.attris a bare string giving the name of the attribute, andctxisLoad,StoreorDelaccording to how the attribute is acted on.>>> print(ast.dump(ast.parse('snake.colour', mode='eval'), indent=4)) Expression( body=Attribute( value=Name(id='snake', ctx=Load()), attr='colour', ctx=Load()))
-
class
ast.NamedExpr(target, value)¶ A named expression. This AST node is produced by the assignment expressions operator (also known as the walrus operator). As opposed to the
Assignnode in which the first argument can be multiple nodes, in this case bothtargetandvaluemust be single nodes.>>> print(ast.dump(ast.parse('(x := 4)', mode='eval'), indent=4)) Expression( body=NamedExpr( target=Name(id='x', ctx=Store()), value=Constant(value=4)))
Subscripting¶
-
class
ast.Subscript(value, slice, ctx)¶ A subscript, such as
l[1].valueis the subscripted object (usually sequence or mapping).sliceis an index, slice or key. It can be aTupleand contain aSlice.ctxisLoad,StoreorDelaccording to the action performed with the subscript.>>> print(ast.dump(ast.parse('l[1:2, 3]', mode='eval'), indent=4)) Expression( body=Subscript( value=Name(id='l', ctx=Load()), slice=Tuple( elts=[ Slice( lower=Constant(value=1), upper=Constant(value=2)), Constant(value=3)], ctx=Load()), ctx=Load()))
-
class
ast.Slice(lower, upper, step)¶ Regular slicing (on the form
lower:upperorlower:upper:step). Can occur only inside the slice field ofSubscript, either directly or as an element ofTuple.>>> print(ast.dump(ast.parse('l[1:2]', mode='eval'), indent=4)) Expression( body=Subscript( value=Name(id='l', ctx=Load()), slice=Slice( lower=Constant(value=1), upper=Constant(value=2)), ctx=Load()))
Comprehensions¶
-
class
ast.ListComp(elt, generators)¶ -
class
ast.SetComp(elt, generators)¶ -
class
ast.GeneratorExp(elt, generators)¶ -
class
ast.DictComp(key, value, generators)¶ List and set comprehensions, generator expressions, and dictionary comprehensions.
elt(orkeyandvalue) is a single node representing the part that will be evaluated for each item.generatorsis a list ofcomprehensionnodes.>>> print(ast.dump(ast.parse('[x for x in numbers]', mode='eval'), indent=4)) Expression( body=ListComp( elt=Name(id='x', ctx=Load()), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), ifs=[], is_async=0)])) >>> print(ast.dump(ast.parse('{x: x**2 for x in numbers}', mode='eval'), indent=4)) Expression( body=DictComp( key=Name(id='x', ctx=Load()), value=BinOp( left=Name(id='x', ctx=Load()), op=Pow(), right=Constant(value=2)), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), ifs=[], is_async=0)])) >>> print(ast.dump(ast.parse('{x for x in numbers}', mode='eval'), indent=4)) Expression( body=SetComp( elt=Name(id='x', ctx=Load()), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), ifs=[], is_async=0)]))
-
class
ast.comprehension(target, iter, ifs, is_async)¶ One
forclause in a comprehension.targetis the reference to use for each element - typically aNameorTuplenode.iteris the object to iterate over.ifsis a list of test expressions: eachforclause can have multipleifs.is_asyncindicates a comprehension is asynchronous (using anasync forinstead offor). The value is an integer (0 or 1).>>> print(ast.dump(ast.parse('[ord(c) for line in file for c in line]', mode='eval'), ... indent=4)) # Multiple comprehensions in one. Expression( body=ListComp( elt=Call( func=Name(id='ord', ctx=Load()), args=[ Name(id='c', ctx=Load())], keywords=[]), generators=[ comprehension( target=Name(id='line', ctx=Store()), iter=Name(id='file', ctx=Load()), ifs=[], is_async=0), comprehension( target=Name(id='c', ctx=Store()), iter=Name(id='line', ctx=Load()), ifs=[], is_async=0)])) >>> print(ast.dump(ast.parse('(n**2 for n in it if n>5 if n<10)', mode='eval'), ... indent=4)) # generator comprehension Expression( body=GeneratorExp( elt=BinOp( left=Name(id='n', ctx=Load()), op=Pow(), right=Constant(value=2)), generators=[ comprehension( target=Name(id='n', ctx=Store()), iter=Name(id='it', ctx=Load()), ifs=[ Compare( left=Name(id='n', ctx=Load()), ops=[ Gt()], comparators=[ Constant(value=5)]), Compare( left=Name(id='n', ctx=Load()), ops=[ Lt()], comparators=[ Constant(value=10)])], is_async=0)])) >>> print(ast.dump(ast.parse('[i async for i in soc]', mode='eval'), ... indent=4)) # Async comprehension Expression( body=ListComp( elt=Name(id='i', ctx=Load()), generators=[ comprehension( target=Name(id='i', ctx=Store()), iter=Name(id='soc', ctx=Load()), ifs=[], is_async=1)]))
Statements¶
-
class
ast.Assign(targets, value, type_comment)¶ An assignment.
targetsis a list of nodes, andvalueis a single node.Multiple nodes in
targetsrepresents assigning the same value to each. Unpacking is represented by putting aTupleorListwithintargets.-
type_comment¶ type_commentis an optional string with the type annotation as a comment.
>>> print(ast.dump(ast.parse('a = b = 1'), indent=4)) # Multiple assignment Module( body=[ Assign( targets=[ Name(id='a', ctx=Store()), Name(id='b', ctx=Store())], value=Constant(value=1))], type_ignores=[]) >>> print(ast.dump(ast.parse('a,b = c'), indent=4)) # Unpacking Module( body=[ Assign( targets=[ Tuple( elts=[ Name(id='a', ctx=Store()), Name(id='b', ctx=Store())], ctx=Store())], value=Name(id='c', ctx=Load()))], type_ignores=[])
-
-
class
ast.AnnAssign(target, annotation, value, simple)¶ An assignment with a type annotation.
targetis a single node and can be aName, aAttributeor aSubscript.annotationis the annotation, such as aConstantorNamenode.valueis a single optional node.simpleis a boolean integer set to True for aNamenode intargetthat do not appear in between parenthesis and are hence pure names and not expressions.>>> print(ast.dump(ast.parse('c: int'), indent=4)) Module( body=[ AnnAssign( target=Name(id='c', ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=1)], type_ignores=[]) >>> print(ast.dump(ast.parse('(a): int = 1'), indent=4)) # Annotation with parenthesis Module( body=[ AnnAssign( target=Name(id='a', ctx=Store()), annotation=Name(id='int', ctx=Load()), value=Constant(value=1), simple=0)], type_ignores=[]) >>> print(ast.dump(ast.parse('a.b: int'), indent=4)) # Attribute annotation Module( body=[ AnnAssign( target=Attribute( value=Name(id='a', ctx=Load()), attr='b', ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=0)], type_ignores=[]) >>> print(ast.dump(ast.parse('a[1]: int'), indent=4)) # Subscript annotation Module( body=[ AnnAssign( target=Subscript( value=Name(id='a', ctx=Load()), slice=Constant(value=1), ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=0)], type_ignores=[])
-
class
ast.AugAssign(target, op, value)¶ Augmented assignment, such as
a += 1. In the following example,targetis aNamenode forx(with theStorecontext),opisAdd, andvalueis aConstantwith value for 1.The
targetattribute cannot be of classTupleorList, unlike the targets ofAssign.>>> print(ast.dump(ast.parse('x += 2'), indent=4)) Module( body=[ AugAssign( target=Name(id='x', ctx=Store()), op=Add(), value=Constant(value=2))], type_ignores=[])
-
class
ast.Raise(exc, cause)¶ A
raisestatement.excis the exception object to be raised, normally aCallorName, orNonefor a standaloneraise.causeis the optional part foryinraise x from y.>>> print(ast.dump(ast.parse('raise x from y'), indent=4)) Module( body=[ Raise( exc=Name(id='x', ctx=Load()), cause=Name(id='y', ctx=Load()))], type_ignores=[])
-
class
ast.Assert(test, msg)¶ An assertion.
testholds the condition, such as aComparenode.msgholds the failure message.>>> print(ast.dump(ast.parse('assert x,y'), indent=4)) Module( body=[ Assert( test=Name(id='x', ctx=Load()), msg=Name(id='y', ctx=Load()))], type_ignores=[])
-
class
ast.Delete(targets)¶ Represents a
delstatement.targetsis a list of nodes, such asName,AttributeorSubscriptnodes.>>> print(ast.dump(ast.parse('del x,y,z'), indent=4)) Module( body=[ Delete( targets=[ Name(id='x', ctx=Del()), Name(id='y', ctx=Del()), Name(id='z', ctx=Del())])], type_ignores=[])
-
class
ast.Pass¶ A
passstatement.>>> print(ast.dump(ast.parse('pass'), indent=4)) Module( body=[ Pass()], type_ignores=[])
Other statements which are only applicable inside functions or loops are described in other sections.
Imports¶
-
class
ast.Import(names)¶ An import statement.
namesis a list ofaliasnodes.>>> print(ast.dump(ast.parse('import x,y,z'), indent=4)) Module( body=[ Import( names=[ alias(name='x'), alias(name='y'), alias(name='z')])], type_ignores=[])
-
class
ast.ImportFrom(module, names, level)¶ Represents
from x import y.moduleis a raw string of the 'from' name, without any leading dots, orNonefor statements such asfrom . import foo.levelis an integer holding the level of the relative import (0 means absolute import).>>> print(ast.dump(ast.parse('from y import x,y,z'), indent=4)) Module( body=[ ImportFrom( module='y', names=[ alias(name='x'), alias(name='y'), alias(name='z')], level=0)], type_ignores=[])
-
class
ast.alias(name, asname)¶ Both parameters are raw strings of the names.
asnamecan beNoneif the regular name is to be used.>>> print(ast.dump(ast.parse('from ..foo.bar import a as b, c'), indent=4)) Module( body=[ ImportFrom( module='foo.bar', names=[ alias(name='a', asname='b'), alias(name='c')], level=2)], type_ignores=[])
Control flow¶
注解
Optional clauses such as else are stored as an empty list if they're
not present.
-
class
ast.If(test, body, orelse)¶ An
ifstatement.testholds a single node, such as aComparenode.bodyandorelseeach hold a list of nodes.elifclauses don't have a special representation in the AST, but rather appear as extraIfnodes within theorelsesection of the previous one.>>> print(ast.dump(ast.parse(""" ... if x: ... ... ... elif y: ... ... ... else: ... ... ... """), indent=4)) Module( body=[ If( test=Name(id='x', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ If( test=Name(id='y', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
-
class
ast.For(target, iter, body, orelse, type_comment)¶ A
forloop.targetholds the variable(s) the loop assigns to, as a singleName,TupleorListnode.iterholds the item to be looped over, again as a single node.bodyandorelsecontain lists of nodes to execute. Those inorelseare executed if the loop finishes normally, rather than via abreakstatement.-
type_comment¶ type_commentis an optional string with the type annotation as a comment.
>>> print(ast.dump(ast.parse(""" ... for x in y: ... ... ... else: ... ... ... """), indent=4)) Module( body=[ For( target=Name(id='x', ctx=Store()), iter=Name(id='y', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])], type_ignores=[])
-
-
class
ast.While(test, body, orelse)¶ A
whileloop.testholds the condition, such as aComparenode.>> print(ast.dump(ast.parse(""" ... while x: ... ... ... else: ... ... ... """), indent=4)) Module( body=[ While( test=Name(id='x', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])], type_ignores=[])
-
class
ast.Break¶ -
class
ast.Continue¶ The
breakandcontinuestatements.>>> print(ast.dump(ast.parse("""\ ... for a in b: ... if a > 5: ... break ... else: ... continue ... ... """), indent=4)) Module( body=[ For( target=Name(id='a', ctx=Store()), iter=Name(id='b', ctx=Load()), body=[ If( test=Compare( left=Name(id='a', ctx=Load()), ops=[ Gt()], comparators=[ Constant(value=5)]), body=[ Break()], orelse=[ Continue()])], orelse=[])], type_ignores=[])
-
class
ast.Try(body, handlers, orelse, finalbody)¶ tryblocks. All attributes are list of nodes to execute, except forhandlers, which is a list ofExceptHandlernodes.>>> print(ast.dump(ast.parse(""" ... try: ... ... ... except Exception: ... ... ... except OtherException as e: ... ... ... else: ... ... ... finally: ... ... ... """), indent=4)) Module( body=[ Try( body=[ Expr( value=Constant(value=Ellipsis))], handlers=[ ExceptHandler( type=Name(id='Exception', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))]), ExceptHandler( type=Name(id='OtherException', ctx=Load()), name='e', body=[ Expr( value=Constant(value=Ellipsis))])], orelse=[ Expr( value=Constant(value=Ellipsis))], finalbody=[ Expr( value=Constant(value=Ellipsis))])], type_ignores=[])
-
class
ast.ExceptHandler(type, name, body)¶ A single
exceptclause.typeis the exception type it will match, typically aNamenode (orNonefor a catch-allexcept:clause).nameis a raw string for the name to hold the exception, orNoneif the clause doesn't haveas foo.bodyis a list of nodes.>>> print(ast.dump(ast.parse("""\ ... try: ... a + 1 ... except TypeError: ... pass ... """), indent=4)) Module( body=[ Try( body=[ Expr( value=BinOp( left=Name(id='a', ctx=Load()), op=Add(), right=Constant(value=1)))], handlers=[ ExceptHandler( type=Name(id='TypeError', ctx=Load()), body=[ Pass()])], orelse=[], finalbody=[])], type_ignores=[])
-
class
ast.With(items, body, type_comment)¶ A
withblock.itemsis a list ofwithitemnodes representing the context managers, andbodyis the indented block inside the context.-
type_comment¶ type_commentis an optional string with the type annotation as a comment.
-
-
class
ast.withitem(context_expr, optional_vars)¶ A single context manager in a
withblock.context_expris the context manager, often aCallnode.optional_varsis aName,TupleorListfor theas foopart, orNoneif that isn't used.>>> print(ast.dump(ast.parse("""\ ... with a as b, c as d: ... something(b, d) ... """), indent=4)) Module( body=[ With( items=[ withitem( context_expr=Name(id='a', ctx=Load()), optional_vars=Name(id='b', ctx=Store())), withitem( context_expr=Name(id='c', ctx=Load()), optional_vars=Name(id='d', ctx=Store()))], body=[ Expr( value=Call( func=Name(id='something', ctx=Load()), args=[ Name(id='b', ctx=Load()), Name(id='d', ctx=Load())], keywords=[]))])], type_ignores=[])
Pattern matching¶
-
class
ast.Match(subject, cases)¶ A
matchstatement.subjectholds the subject of the match (the object that is being matched against the cases) andcasescontains an iterable ofmatch_casenodes with the different cases.
-
class
ast.match_case(pattern, guard, body)¶ A single case pattern in a
matchstatement.patterncontains the match pattern that the subject will be matched against. Note that theASTnodes produced for patterns differ from those produced for expressions, even when they share the same syntax.The
guardattribute contains an expression that will be evaluated if the pattern matches the subject.bodycontains a list of nodes to execute if the pattern matches and the result of evaluating the guard expression is true.>>> print(ast.dump(ast.parse(""" ... match x: ... case [x] if x>0: ... ... ... case tuple(): ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchSequence( patterns=[ MatchAs(name='x')]), guard=Compare( left=Name(id='x', ctx=Load()), ops=[ Gt()], comparators=[ Constant(value=0)]), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchClass( cls=Name(id='tuple', ctx=Load()), patterns=[], kwd_attrs=[], kwd_patterns=[]), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
-
class
ast.MatchValue(value)¶ A match literal or value pattern that compares by equality.
valueis an expression node. Permitted value nodes are restricted as described in the match statement documentation. This pattern succeeds if the match subject is equal to the evaluated value.>>> print(ast.dump(ast.parse(""" ... match x: ... case "Relevant": ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchValue( value=Constant(value='Relevant')), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
-
class
ast.MatchSingleton(value)¶ A match literal pattern that compares by identity.
valueis the singleton to be compared against:None,True, orFalse. This pattern succeeds if the match subject is the given constant.>>> print(ast.dump(ast.parse(""" ... match x: ... case None: ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchSingleton(value=None), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
-
class
ast.MatchSequence(patterns)¶ A match sequence pattern.
patternscontains the patterns to be matched against the subject elements if the subject is a sequence. Matches a variable length sequence if one of the subpatterns is aMatchStarnode, otherwise matches a fixed length sequence.>>> print(ast.dump(ast.parse(""" ... match x: ... case [1, 2]: ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchSequence( patterns=[ MatchValue( value=Constant(value=1)), MatchValue( value=Constant(value=2))]), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
-
class
ast.MatchStar(name)¶ Matches the rest of the sequence in a variable length match sequence pattern. If
nameis notNone, a list containing the remaining sequence elements is bound to that name if the overall sequence pattern is successful.>>> print(ast.dump(ast.parse(""" ... match x: ... case [1, 2, *rest]: ... ... ... case [*_]: ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchSequence( patterns=[ MatchValue( value=Constant(value=1)), MatchValue( value=Constant(value=2)), MatchStar(name='rest')]), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchSequence( patterns=[ MatchStar()]), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
-
class
ast.MatchMapping(keys, patterns, rest)¶ A match mapping pattern.
keysis a sequence of expression nodes.patternsis a corresponding sequence of pattern nodes.restis an optional name that can be specified to capture the remaining mapping elements. Permitted key expressions are restricted as described in the match statement documentation.This pattern succeeds if the subject is a mapping, all evaluated key expressions are present in the mapping, and the value corresponding to each key matches the corresponding subpattern. If
restis notNone, a dict containing the remaining mapping elements is bound to that name if the overall mapping pattern is successful.>>> print(ast.dump(ast.parse(""" ... match x: ... case {1: _, 2: _}: ... ... ... case {**rest}: ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchMapping( keys=[ Constant(value=1), Constant(value=2)], patterns=[ MatchAs(), MatchAs()]), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchMapping(keys=[], patterns=[], rest='rest'), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
-
class
ast.MatchClass(cls, patterns, kwd_attrs, kwd_patterns)¶ A match class pattern.
clsis an expression giving the nominal class to be matched.patternsis a sequence of pattern nodes to be matched against the class defined sequence of pattern matching attributes.kwd_attrsis a sequence of additional attributes to be matched (specified as keyword arguments in the class pattern),kwd_patternsare the corresponding patterns (specified as keyword values in the class pattern).This pattern succeeds if the subject is an instance of the nominated class, all positional patterns match the corresponding class-defined attributes, and any specified keyword attributes match their corresponding pattern.
Note: classes may define a property that returns self in order to match a pattern node against the instance being matched. Several builtin types are also matched that way, as described in the match statement documentation.
>>> print(ast.dump(ast.parse(""" ... match x: ... case Point2D(0, 0): ... ... ... case Point3D(x=0, y=0, z=0): ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchClass( cls=Name(id='Point2D', ctx=Load()), patterns=[ MatchValue( value=Constant(value=0)), MatchValue( value=Constant(value=0))], kwd_attrs=[], kwd_patterns=[]), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchClass( cls=Name(id='Point3D', ctx=Load()), patterns=[], kwd_attrs=[ 'x', 'y', 'z'], kwd_patterns=[ MatchValue( value=Constant(value=0)), MatchValue( value=Constant(value=0)), MatchValue( value=Constant(value=0))]), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
-
class
ast.MatchAs(pattern, name)¶ A match "as-pattern", capture pattern or wildcard pattern.
patterncontains the match pattern that the subject will be matched against. If the pattern isNone, the node represents a capture pattern (i.e a bare name) and will always succeed.The
nameattribute contains the name that will be bound if the pattern is successful. IfnameisNone,patternmust also beNoneand the node represents the wildcard pattern.>>> print(ast.dump(ast.parse(""" ... match x: ... case [x] as y: ... ... ... case _: ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchAs( pattern=MatchSequence( patterns=[ MatchAs(name='x')]), name='y'), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchAs(), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
-
class
ast.MatchOr(patterns)¶ A match "or-pattern". An or-pattern matches each of its subpatterns in turn to the subject, until one succeeds. The or-pattern is then deemed to succeed. If none of the subpatterns succeed the or-pattern fails. The
patternsattribute contains a list of match pattern nodes that will be matched against the subject.>>> print(ast.dump(ast.parse(""" ... match x: ... case [x] | (y): ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchOr( patterns=[ MatchSequence( patterns=[ MatchAs(name='x')]), MatchAs(name='y')]), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
Function and class definitions¶
-
class
ast.FunctionDef(name, args, body, decorator_list, returns, type_comment)¶ A function definition.
nameis a raw string of the function name.argsis anargumentsnode.bodyis the list of nodes inside the function.decorator_listis the list of decorators to be applied, stored outermost first (i.e. the first in the list will be applied last).returnsis the return annotation.
-
type_comment¶ type_commentis an optional string with the type annotation as a comment.
-
class
ast.Lambda(args, body)¶ lambdais a minimal function definition that can be used inside an expression. UnlikeFunctionDef,bodyholds a single node.>>> print(ast.dump(ast.parse('lambda x,y: ...'), indent=4)) Module( body=[ Expr( value=Lambda( args=arguments( posonlyargs=[], args=[ arg(arg='x'), arg(arg='y')], kwonlyargs=[], kw_defaults=[], defaults=[]), body=Constant(value=Ellipsis)))], type_ignores=[])
-
class
ast.arguments(posonlyargs, args, vararg, kwonlyargs, kw_defaults, kwarg, defaults)¶ The arguments for a function.
posonlyargs,argsandkwonlyargsare lists ofargnodes.varargandkwargare singleargnodes, referring to the*args, **kwargsparameters.kw_defaultsis a list of default values for keyword-only arguments. If one isNone, the corresponding argument is required.defaultsis a list of default values for arguments that can be passed positionally. If there are fewer defaults, they correspond to the last n arguments.
-
class
ast.arg(arg, annotation, type_comment)¶ A single argument in a list.
argis a raw string of the argument name,annotationis its annotation, such as aStrorNamenode.-
type_comment¶ type_commentis an optional string with the type annotation as a comment
>>> print(ast.dump(ast.parse("""\ ... @decorator1 ... @decorator2 ... def f(a: 'annotation', b=1, c=2, *d, e, f=3, **g) -> 'return annotation': ... pass ... """), indent=4)) Module( body=[ FunctionDef( name='f', args=arguments( posonlyargs=[], args=[ arg( arg='a', annotation=Constant(value='annotation')), arg(arg='b'), arg(arg='c')], vararg=arg(arg='d'), kwonlyargs=[ arg(arg='e'), arg(arg='f')], kw_defaults=[ None, Constant(value=3)], kwarg=arg(arg='g'), defaults=[ Constant(value=1), Constant(value=2)]), body=[ Pass()], decorator_list=[ Name(id='decorator1', ctx=Load()), Name(id='decorator2', ctx=Load())], returns=Constant(value='return annotation'))], type_ignores=[])
-
-
class
ast.Return(value)¶ A
returnstatement.>>> print(ast.dump(ast.parse('return 4'), indent=4)) Module( body=[ Return( value=Constant(value=4))], type_ignores=[])
-
class
ast.Yield(value)¶ -
class
ast.YieldFrom(value)¶ A
yieldoryield fromexpression. Because these are expressions, they must be wrapped in aExprnode if the value sent back is not used.>>> print(ast.dump(ast.parse('yield x'), indent=4)) Module( body=[ Expr( value=Yield( value=Name(id='x', ctx=Load())))], type_ignores=[]) >>> print(ast.dump(ast.parse('yield from x'), indent=4)) Module( body=[ Expr( value=YieldFrom( value=Name(id='x', ctx=Load())))], type_ignores=[])
-
class
ast.Global(names)¶ -
class
ast.Nonlocal(names)¶ globalandnonlocalstatements.namesis a list of raw strings.>>> print(ast.dump(ast.parse('global x,y,z'), indent=4)) Module( body=[ Global( names=[ 'x', 'y', 'z'])], type_ignores=[]) >>> print(ast.dump(ast.parse('nonlocal x,y,z'), indent=4)) Module( body=[ Nonlocal( names=[ 'x', 'y', 'z'])], type_ignores=[])
-
class
ast.ClassDef(name, bases, keywords, starargs, kwargs, body, decorator_list)¶ A class definition.
nameis a raw string for the class namebasesis a list of nodes for explicitly specified base classes.keywordsis a list ofkeywordnodes, principally for 'metaclass'. Other keywords will be passed to the metaclass, as per PEP-3115.starargsandkwargsare each a single node, as in a function call. starargs will be expanded to join the list of base classes, and kwargs will be passed to the metaclass.bodyis a list of nodes representing the code within the class definition.decorator_listis a list of nodes, as inFunctionDef.
>>> print(ast.dump(ast.parse("""\ ... @decorator1 ... @decorator2 ... class Foo(base1, base2, metaclass=meta): ... pass ... """), indent=4)) Module( body=[ ClassDef( name='Foo', bases=[ Name(id='base1', ctx=Load()), Name(id='base2', ctx=Load())], keywords=[ keyword( arg='metaclass', value=Name(id='meta', ctx=Load()))], body=[ Pass()], decorator_list=[ Name(id='decorator1', ctx=Load()), Name(id='decorator2', ctx=Load())])], type_ignores=[])
Async and await¶
-
class
ast.AsyncFunctionDef(name, args, body, decorator_list, returns, type_comment)¶ An
async deffunction definition. Has the same fields asFunctionDef.
-
class
ast.Await(value)¶ An
awaitexpression.valueis what it waits for. Only valid in the body of anAsyncFunctionDef.
>>> print(ast.dump(ast.parse("""\
... async def f():
... await other_func()
... """), indent=4))
Module(
body=[
AsyncFunctionDef(
name='f',
args=arguments(
posonlyargs=[],
args=[],
kwonlyargs=[],
kw_defaults=[],
defaults=[]),
body=[
Expr(
value=Await(
value=Call(
func=Name(id='other_func', ctx=Load()),
args=[],
keywords=[])))],
decorator_list=[])],
type_ignores=[])
-
class
ast.AsyncFor(target, iter, body, orelse, type_comment)¶ -
class
ast.AsyncWith(items, body, type_comment)¶ async forloops andasync withcontext managers. They have the same fields asForandWith, respectively. Only valid in the body of anAsyncFunctionDef.
注解
When a string is parsed by ast.parse(), operator nodes (subclasses
of ast.operator, ast.unaryop, ast.cmpop,
ast.boolop and ast.expr_context) on the returned tree
will be singletons. Changes to one will be reflected in all other
occurrences of the same value (e.g. ast.Add).
ast 中的辅助函数¶
除了节点类, ast 模块里为遍历抽象语法树定义了这些工具函数和类:
-
ast.parse(source, filename='<unknown>', mode='exec', *, type_comments=False, feature_version=None)¶ 把源码解析为AST节点。和
compile(source, filename, mode,ast.PyCF_ONLY_AST)等价。If
type_comments=Trueis given, the parser is modified to check and return type comments as specified by PEP 484 and PEP 526. This is equivalent to addingast.PyCF_TYPE_COMMENTSto the flags passed tocompile(). This will report syntax errors for misplaced type comments. Without this flag, type comments will be ignored, and thetype_commentfield on selected AST nodes will always beNone. In addition, the locations of# type: ignorecomments will be returned as thetype_ignoresattribute ofModule(otherwise it is always an empty list).In addition, if
modeis'func_type', the input syntax is modified to correspond to PEP 484 "signature type comments", e.g.(str, int) -> List[str].Also, setting
feature_versionto a tuple(major, minor)will attempt to parse using that Python version's grammar. Currentlymajormust equal to3. For example, settingfeature_version=(3, 4)will allow the use ofasyncandawaitas variable names. The lowest supported version is(3, 4); the highest issys.version_info[0:2].If source contains a null character ('0'),
ValueErroris raised.警告
Note that successfully parsing source code into an AST object doesn't guarantee that the source code provided is valid Python code that can be executed as the compilation step can raise further
SyntaxErrorexceptions. For instance, the sourcereturn 42generates a valid AST node for a return statement, but it cannot be compiled alone (it needs to be inside a function node).In particular,
ast.parse()won't do any scoping checks, which the compilation step does.警告
足够复杂或是巨大的字符串可能导致Python解释器的崩溃,因为Python的AST编译器是有栈深限制的。
在 3.8 版更改: Added
type_comments,mode='func_type'andfeature_version.
-
ast.unparse(ast_obj)¶ Unparse an
ast.ASTobject and generate a string with code that would produce an equivalentast.ASTobject if parsed back withast.parse().警告
The produced code string will not necessarily be equal to the original code that generated the
ast.ASTobject (without any compiler optimizations, such as constant tuples/frozensets).警告
Trying to unparse a highly complex expression would result with
RecursionError.3.9 新版功能.
-
ast.literal_eval(node_or_string)¶ Safely evaluate an expression node or a string containing a Python literal or container display. The string or node provided may only consist of the following Python literal structures: strings, bytes, numbers, tuples, lists, dicts, sets, booleans,
NoneandEllipsis.This can be used for safely evaluating strings containing Python values from untrusted sources without the need to parse the values oneself. It is not capable of evaluating arbitrarily complex expressions, for example involving operators or indexing.
警告
足够复杂或是巨大的字符串可能导致Python解释器的崩溃,因为Python的AST编译器是有栈深限制的。
It can raise
ValueError,TypeError,SyntaxError,MemoryErrorandRecursionErrordepending on the malformed input.在 3.2 版更改: 目前支持字节和集合。
在 3.9 版更改: Now supports creating empty sets with
'set()'.在 3.10 版更改: For string inputs, leading spaces and tabs are now stripped.
-
ast.get_docstring(node, clean=True)¶ Return the docstring of the given node (which must be a
FunctionDef,AsyncFunctionDef,ClassDef, orModulenode), orNoneif it has no docstring. If clean is true, clean up the docstring's indentation withinspect.cleandoc().在 3.5 版更改: 目前支持
AsyncFunctionDef
-
ast.get_source_segment(source, node, *, padded=False)¶ Get source code segment of the source that generated node. If some location information (
lineno,end_lineno,col_offset, orend_col_offset) is missing, returnNone.If padded is
True, the first line of a multi-line statement will be padded with spaces to match its original position.3.8 新版功能.
-
ast.fix_missing_locations(node)¶ When you compile a node tree with
compile(), the compiler expectslinenoandcol_offsetattributes for every node that supports them. This is rather tedious to fill in for generated nodes, so this helper adds these attributes recursively where not already set, by setting them to the values of the parent node. It works recursively starting at node.
-
ast.increment_lineno(node, n=1)¶ Increment the line number and end line number of each node in the tree starting at node by n. This is useful to "move code" to a different location in a file.
-
ast.copy_location(new_node, old_node)¶ Copy source location (
lineno,col_offset,end_lineno, andend_col_offset) from old_node to new_node if possible, and return new_node.
-
ast.iter_fields(node)¶ Yield a tuple of
(fieldname, value)for each field innode._fieldsthat is present on node.
-
ast.iter_child_nodes(node)¶ Yield all direct child nodes of node, that is, all fields that are nodes and all items of fields that are lists of nodes.
-
ast.walk(node)¶ Recursively yield all descendant nodes in the tree starting at node (including node itself), in no specified order. This is useful if you only want to modify nodes in place and don't care about the context.
-
class
ast.NodeVisitor¶ A node visitor base class that walks the abstract syntax tree and calls a visitor function for every node found. This function may return a value which is forwarded by the
visit()method.This class is meant to be subclassed, with the subclass adding visitor methods.
-
visit(node)¶ Visit a node. The default implementation calls the method called
self.visit_classnamewhere classname is the name of the node class, orgeneric_visit()if that method doesn't exist.
-
generic_visit(node)¶ This visitor calls
visit()on all children of the node.Note that child nodes of nodes that have a custom visitor method won't be visited unless the visitor calls
generic_visit()or visits them itself.
Don't use the
NodeVisitorif you want to apply changes to nodes during traversal. For this a special visitor exists (NodeTransformer) that allows modifications.3.8 版后已移除: Methods
visit_Num(),visit_Str(),visit_Bytes(),visit_NameConstant()andvisit_Ellipsis()are deprecated now and will not be called in future Python versions. Add thevisit_Constant()method to handle all constant nodes.-
-
class
ast.NodeTransformer¶ 子类
NodeVisitor用于遍历抽象语法树,并允许修改节点。NodeTransformer将遍历抽象语法树并使用visitor方法的返回值去替换或移除旧节点。如果visitor方法的返回值为None, 则该节点将从其位置移除,否则将替换为返回值。当返回值是原始节点时,无需替换。如下是一个转换器示例,它将所有出现的名称 (
foo) 重写为data['foo']:class RewriteName(NodeTransformer): def visit_Name(self, node): return Subscript( value=Name(id='data', ctx=Load()), slice=Constant(value=node.id), ctx=node.ctx )
请记住,如果您正在操作的节点具有子节点,则必须先转换其子节点或为该节点调用
generic_visit()方法。对于属于语句集合(适用于所有语句节点)的节点,访问者还可以返回节点列表而不仅仅是单个节点。
If
NodeTransformerintroduces new nodes (that weren't part of original tree) without giving them location information (such aslineno),fix_missing_locations()should be called with the new sub-tree to recalculate the location information:tree = ast.parse('foo', mode='eval') new_tree = fix_missing_locations(RewriteName().visit(tree))
通常你可以像这样使用转换器:
node = YourTransformer().visit(node)
-
ast.dump(node, annotate_fields=True, include_attributes=False, *, indent=None)¶ Return a formatted dump of the tree in node. This is mainly useful for debugging purposes. If annotate_fields is true (by default), the returned string will show the names and the values for fields. If annotate_fields is false, the result string will be more compact by omitting unambiguous field names. Attributes such as line numbers and column offsets are not dumped by default. If this is wanted, include_attributes can be set to true.
If indent is a non-negative integer or string, then the tree will be pretty-printed with that indent level. An indent level of 0, negative, or
""will only insert newlines.None(the default) selects the single line representation. Using a positive integer indent indents that many spaces per level. If indent is a string (such as"\t"), that string is used to indent each level.在 3.9 版更改: Added the indent option.
Compiler Flags¶
The following flags may be passed to compile() in order to change
effects on the compilation of a program:
-
ast.PyCF_ALLOW_TOP_LEVEL_AWAIT¶ Enables support for top-level
await,async for,async withand async comprehensions.3.8 新版功能.
-
ast.PyCF_ONLY_AST¶ Generates and returns an abstract syntax tree instead of returning a compiled code object.
命令行用法¶
3.9 新版功能.
The ast module can be executed as a script from the command line.
It is as simple as:
python -m ast [-m <mode>] [-a] [infile]
可以接受以下选项:
-
-h,--help¶ Show the help message and exit.
-
-m<mode>¶ -
--mode<mode>¶ Specify what kind of code must be compiled, like the mode argument in
parse().
-
--no-type-comments¶ Don't parse type comments.
-
-a,--include-attributes¶ Include attributes such as line numbers and column offsets.
If infile is specified its contents are parsed to AST and dumped
to stdout. Otherwise, the content is read from stdin.
参见
Green Tree Snakes, an external documentation resource, has good details on working with Python ASTs.
ASTTokens annotates Python ASTs with the positions of tokens and text in the source code that generated them. This is helpful for tools that make source code transformations.
leoAst.py unifies the token-based and parse-tree-based views of python programs by inserting two-way links between tokens and ast nodes.
LibCST parses code as a Concrete Syntax Tree that looks like an ast tree and keeps all formatting details. It's useful for building automated refactoring (codemod) applications and linters.
Parso is a Python parser that supports error recovery and round-trip parsing for different Python versions (in multiple Python versions). Parso is also able to list multiple syntax errors in your python file.